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J. Phys. A: Gen. Phys., Vol. 5 ,  March 1972. Printed in Great Britain 

Numerical investigation of closure approximations in the 
selfavoiding walk problem 

S G WHITTINGTON and J F HARRIS? 
Lash Miller Chemical Laboratories, University of Toronto, Toronto 5, Ontario, Canada 

MS received 31 August 1971 

Abstract. The hierarchy of equations relating the successive density functions for self- 
avoiding walks on a lattice are solved numerically using two closure approximations and 
the results are compared with the exact enumeration results of Domb. 

1. Introduction 

The conformational properties of polymers with excluded volume have been extensively 
studied by numerical and analytical methods. An approach which has been used by 
many workers is to approximate the properties of the polymer molecule by the properties 
of a selfavoiding walk on a lattice or in the continuum. Although this represents a 
considerable simplification of the original problem, the long range correlation is retained 
and this correlation makes the mathematical treatment extremely complex. 

Since the selfconsistent field approach of Edwards (1965) there has been a renewed 
interest in the problem and a number of related treatments have appeared in the 
literature (Reiss 1967, Torrens 1968, Yamakawa 1968,Yeh and Isihara 1969, Whittington 
1970, Yamakawa 1971 and Freed 1971). For both the lattice and continuum models 
a sequence ofcoupled equations can be derived relating the density functions of successive 
orders (Whittington 1970, Yamakawa 1971 and Freed 1971) and these equations are 
reminiscent of the Kirkwood-Born-Green hierarchy derived for this problem by 
Naghizadeh (1968). 

The importance of such hierarchies of equations is that they can be combined with 
a closure approximation which supplies a second relationship between a density function 
of a certain order and the density functions of lower order. The equations can then be 
solved to yield approximate information about the low order density functions. 

Before attempting to use the hierarchies of equations, coupled with a closure approxi- 
mation, to investigate a particular model of polymer conformation, it is important to 
have some quantitative idea of the reliability of the closure approximation. Yamakawa 
(197 1) has examined some closure approximations for the continuum model but chose 
to solve the resulting equations in the uniform expansion approximation. It is not 
entirely clear how much of the resulting errors arise from the closure approximation 
and how much from the mathematical convenience of using the uniform expansion 
approximation. There are some quite reliable Monte Carlo data (Bruns 1969) on the 
pearl necklace model of a polymer in the continuum, against which results can be tested. 
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However, the enormous quantity of exact enumeration and Monte Carlo data for self- 
avoiding walks on a variety of lattices suggests that the lattice model is more convenient 
for evaluating the relative reliabilities of closure approximations. 

In this paper we examine two closure approximations in the hierarchies of equations 
for the square, triangular and cubic lattices. These approximations are discussed 
physically and the equations are solved numerically (but accurately) for selfavoiding 
walks up to between 20 and 30 steps. It would be rather easy to push the calculations 
beyond this stage but this should be sufficient to indicate the adequacy of these closure 
approximations. Exact values are available up to sixteen and ten steps for the square 
and cubic lattices and up to nine steps for the triangular lattice (Domb 1963) as well 
as asymptotic estimates of the dependence of the mean square length on the number of 
steps in the selfavoiding walk. We compare the values of the mean square lengths, 
calculated using the closure approximations, with the exact values. 

2. The closure approximations 

We first briefly restate the equations derived previously for the cubic lattice (Whittington 
1970) in a form applicable to any lattice. Let p(r,  n) be the probability that the walk 
reaches point r after n steps and let p2(r ,  n ;  s, m) be the probability that the walk reaches 
r after n steps and s after m steps. The p and p 2  are related through the equation 

(1) 

where q(r, s) = 1 if r and s are neighbouring lattice points or zero otherwise, and A is 
a normalization constant. 

Two closure approximations, which attempt to relate p to p 2 ,  have appeared in the 
literature. The first of these is an independence assumption 

1 n- 1 

( s  s m = O  
p(r, n + 1) = A P(S ,  n)q(r, s) - 1 1 p2(s, n ; r, m)q(s, r )  

p&, n ; s, m) = p(r, nMs, m) 

and the second is a Markov assumption 

p 2 ( r ,  n ; s, m) = P ( S ,  m)p(r - s, n - m) n > m. 

The primary purpose of this paper is to explore the adequacy of these approximations 
in the treatment of selfavoiding walks. It is helpful to consider briefly what these 
approximations imply physically about the process and to notice that we should not 
expect either of them to lead to an exact treatment of the problem. 

The first approximation implies that reaching r after n steps and s after m steps are 
independent events and, to this extent, the connectivity of the polymer is being ignored. 
Reiss (1967) has suggested that use of this closure approximation will completely remove 
the excluded volume effect and we shall show that, although this is not true, it does 
indeed underestimate the importance of the excluded volume effects. 

The second approximation implies that the behaviour of the first m steps of the 
walk is independent of the behaviour of the next (n-m) steps. For an unrestricted 
random walk this closure is exact. However, for a selfavoiding walk we must take 
account of interactions between these two segments of the walk and, in general 

P20.7 n ; s, m) < P ( S ,  m)p(r - s, n - m) 
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so that this approximation overestimates the excluded volume effect by making the 
correction term involving p 2  too large. This conclusion is supported by the numerical 
results. 

3. Numerical solution of the equations 

Using the independence approximation, equation (1) reduces to 

p(r, n+ 1) = A 1 - c p(r, m) c P b ,  M s ,  r )  ( :I: 1 s 
with the boundary condition p(r, 0) = 6(r). This equation can be conveniently solved 
using a marching technique. 

With the Markov assumption, equation (1) becomes 

n -  1 

p(r, n + 1) = A c P(s, M r ,  4 - c p(r, m) P(U, n - m)q(u, 0). (2) 
s m = O  I 

The solution of this equation using a marching technique requires a large quantity 
of computer store and it is more convenient to use a generating function technique. 
We give below the details for the cubic lattice, the argument for any other lattice being 
similar to this. Define 

Gn(a, 8, Y) = P(X, Y ,  Z, n)axBy~z .  
X , Y J  

It then follows from equation (2) that: 

1 n -  1 

( m = o  
G n + l  = A g G n - 6  G,,,p(l,O,O,n-m) 

where g = a + a - ' + j + / 3 - ' + y + y - ' .  We can express Gn as a power series in g 

and it is straightforward to show that, for n odd 

where 2(i + j + k )  = n - 1 and i, j ,  k 2 0. For n even, p( 1,0,0, n) = 0. 
This gives a simple computational scheme for calculating the generating functions 

in this approximation. Of course, all the information contained in p(x,  y ,  z,  n) is also 
contained in Gn(a, 8, y )  and, in particular, we can calculate the mean square end-to-end 
length of the n step walk as 
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4. Results and discussion 

We have calculated the mean square end-to-end lengths of selfavoiding walks for small 
n on the square, triangular and cubic lattices using the two closure approximations 
discussed above. The calculated values are compared with Domb’s exact enumeration 
results in table 1. It is clear that the independence assumption underestimates and 
the Markov assumption overestimates the excluded volume effect. 

Table 1. Mean square lengths calculated using the closure approximations 

n Independence Markov Exact 

Triangular 
3 3.7925 4.2 174 4.2 I74 
4 5,2884 6.4401 6.3495 
5 6.8555 9.0290 8.7407 
10 15,818 26.307 ~ 

20 38,241 77,367 - 

Square 
3 
4 
5 
10 
20 

3.9767 
5,7034 
7.2364 

16.858 
40.753 

4.5556 
7.0400 
94576 

28,876 
84.997 

4.5556 
7.0400 
9.5634 

26.243 

Cubic 
3 
4 
5 
10 
20 

3.5263 
4.8 130 
5.9958 

12.394 
25,790 

3.8800 
5,5538 
7.2897 

17.434 
42.078 

3.8800 
5.5538 
7.2343 

16,817 

If we assume that, for large n, (Y,’) 1 ny. We can estimate y by the linear extrapolants 

or by y,* = $ ( ~ ~ + y , , + ~ )  to compensate for the odd-even alternation. Values of 7 ,  or 
y,* are given in table 2. Except for the cubic lattice with the Markov assumption, the 
sets of yn or y,* values are monotonic in n and we can attempt to estimate the limiting 
values for large n by extrapolating against l/n. For the cubic lattice with the Markov 
assumption such an extrapolation is not possible and we can only notice that the last 
few values lie between 1.282 and 1.287. It appears that the limiting value might lie 
in the range 1.284f0.003. Our final estimates for these extrapolated values are given 
in table 2. These results are not remarkably close to the extrapolated exact values 
(1.5 in two dimensions and 1.2 in three dimensions) but they are obtained with computing 
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times of a few seconds (on an IBM 360/50) instead of many hours as would be required 
for exact enumeration results. It appears that the Markov assumption is rather better 
than the independence assumption. 

Table 2. Values of yn or y: for each closure approximation 

Triangular, y. Square, y.* Cubic, y.* 

n independence Markov independence Markov independence Markov 

18 1,3093 
19 1.3136 
20 1.3178 
21 1.3216 
22 1.3254 
23 1.3289 
24 1.3322 
25 1,3353 
26 1,3385 
27 1.3414 

1.425 
- + 0.005 

1.5854 1.3110 
1.5848 1,3139 
1.5841 1.3198 
1,5835 1.3225 
1,5827 1,3276 
1.5821 1.3303 
1,5816 1.3348 
1.5810 1.3373 
1.5804 1.3412 
1.5800 1.3436 
1,567 1.41 

20.002 kO.01 

1.5878 
1.5868 
1,5861 
1,5852 
1,5845 
1.5837 
1,5830 
1.5822 
1.5816 
1.5810 
1.566 

- + 0.002 

1.0664 1.2849 
1,0668 1.2834 
1.0687 1,2824 
1.0689 1,2852 

1,2847 
1.2827 
1.2863 
1.2851 

1.09 1,284 
kO.01 f O~OO3 

We have already commented (Whittington 1970) on the relationship between the 
Markov closure approximation and a generating function technique used by Wall 
and Whittington (1969). The present results allow us to remark in more detail on this 
connection. From table 1 we can see that this closure approximation breaks down at 
the fifth step for the square and cubic lattices and at the fourth step for the triangular 
lattice. This is the stage at which theta graphs of the type (n, 1, l)e, n > 1, first enter 
on these lattices so that the Markov closure may not take correct account of graphs of 
this type. If we conjecture that the Markov approximation breaks down on first 
encountering graphs of this type, then we would expect it to give exact values up to 
and including three steps on close packed lattices (triangular, face centred cubic, etc) 
and up to and including six steps on the hexagonal and tetrahedral lattices. 

It is interesting to notice that, in general, y n  and y,* increase with n with the indepen- 
dence approximation and decrease with n with the Markov approximation. This has 
the effect that the resulting estimates of y are rather better than one might expect by 
looking at the first few values of ( r i ) .  It is also interesting that the extrapolated values 
of y for each approximation are almost the same for the triangular and square lattices 
so that these approximations, although giving different values of y at least give values 
of y which are almost independent of the lattice and depend only on dimensionality. 
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